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Based on the model proposed by Hilgenfeldt et al. �Nature �London� 398, 401 �1999��, we present here a
comprehensive theory of thermal radiation in single-bubble sonoluminescence �SBSL�. We first invoke the
generalized Kirchhoff’s law to obtain the thermal emissivity from the absorption cross section of a multilay-
ered sphere �MLS�. A sonoluminescing bubble, whose internal structure is determined from hydrodynamic
simulations, is then modeled as a MLS and in turn the thermal radiation is evaluated. Numerical results
obtained from simulations for argon bubbles show that our theory successfully captures the major features
observed in SBSL experiments.
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I. INTRODUCTION

Single-bubble sonoluminescence �SBSL or simply SL�,
first discovered in 1989, is a phenomenon of periodic light
emission by an oscillating gas bubble trapped in the pressure
antinode of a standing ultrasound wave in water �or other
fluids� �see �1,2� for detailed reviews on SBSL�. The oscil-
lating bubble is stable enough to survive many days through
billions of acoustic cycles while the produced flashes are
highly regular and incandescent. The width of the emitted
light pulse is around 10–100 ps with a peak power of the
order 10 mW �1–4�. The light pulse has nearly a Gaussian
shape with a slight asymmetry, which is basically identical in
the red and UV portions of the spectrum �4�, and Hiller et al.
�5� further confirmed that the pulse width and the emission
time were independent of wavelength. However, in an
interesting twist, Moran and Sweider �6� demonstrated that
the pulse width did exhibit a mild dependence on wavelength
at 3 °C, but not at 24 °C. Besides, the power spectrum of
the emitted light was found to be broadband without any
characteristic line, decreasing from the UV portion toward
the red in a way that bore a resemblance to a blackbody
spectrum �5,7,8�.

SBSL has become an intriguing topic and an arena for
experimentalists and theorists alike since its discovery. Nu-
merous attempts have been made to study the bubble motion
using classical bubble dynamics and sophisticated computa-
tional fluid mechanics �CFM� �9–16�. It is generally believed
that the bubble is heated to temperatures of tens of thousands
and shock waves and plasma could be generated during the
contraction of the bubble. Various proposals have been put
forward to explain the light emission mechanism, including
surface blackbody radiation �1,7,17,18�, neutral and ion
bremsstrahlung �12,13,16,19–21�, collision-induced emission
�22,23�, quantum vacuum radiation �24�, confined-electron
model �25�, proton-tunneling �26�, and nuclear fusion

�27–29�. Some of these proposals, e.g., �1,7,12,13,16–23�,
attributed light emission in SBSL to the high temperature
attained in the bubble and are classified as thermal radiation
schemes in this paper. While qualitatively reproducing the
spectra detected in SBSL, most of such thermal schemes
failed to explain why the pulse width is wavelength indepen-
dent as measured in some experiments �4,5�. Owing to this
major drawback of thermal schemes, researchers were forced
to look into other nonthermal and more exotic models �see,
e.g., �24–29��.

To reconcile the success and the drawback of thermal ra-
diation schemes, Hilgenfeldt, Grossmann, and Lohse �20,21�
took the finite opacity of the bubble into consideration and
obtained a wavelength-independent pulse width for argon
bubbles. The impact of the Hilgenfeldt et al. work is huge
and, to some extent, resurrects the thermal radiation scheme.
However, it is worthwhile to note that the approach adopted
in �20,21� is deemed a simplified version of the emission
mechanism of SBSL as several physical processes have not
been included in the proposal �30�. For example, the sonolu-
minescing bubble is modeled as a uniform one and the fluid
dynamics inside the bubble has been neglected from the out-
set �20,21�. Besides, the Kirchhoff’s law used in �20,21� to
evaluate thermal emissivity of the bubble has completely ig-
nored the wave nature of light.

In addition, existing literature �e.g., �2,31–33�� demon-
strates there exists a gap in the theoretical treatment of light
emission mechanism of sonoluminescence, in that blackbody
radiation and thermal bremsstrahlung are often ascribed as
separate possible mechanisms of SBSL. Often, Planck’s for-
mula for blackbody radiation �31,32� and absorption coeffi-
cients for thermal bremsstrahlung in vacuum �20,21� are ap-
plied separately in these cases, and the question of whether
the bubble is opaque enough to demonstrate blackbody ra-
diation is argued in a rather hand-waving manner by com-
paring the photon mean path with an estimated size of the
light-emitting region. In our view, this is because of the lack
of a single theory which can take account of both mecha-
nisms in a finite-sized environment �i.e., the bubble� in a
unifying manner. In a recent experimental paper �33�, Flan-
nigan and Suslick demonstrated conclusively the existence of
a plasma state inside the bubble, and hence thermal brems-
strahlung is an inevitable consequence because of the motion
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of the electrons and ions. We emphasize that blackbody ra-
diation and thermal bremsstrahlung are nothing but one
single emission mechanism manifested upon the degree of
optical thickness of the bubble; and to this purpose, in this
paper we have developed a coherent theory unifying both
aspects in the context of SBSL. Within the framework of this
theory, when the bubble becomes optically thick enough, the
thermal bremsstrahlung manifest itself asymptotically as
blackbody radiation.

First, we will consider thermal emission in a realistic
sonoluminescing bubble that is nonuniform in temperature as
well as density. To properly describe processes of thermal
emission and absorption in a finite volume with a size com-
parable to the wavelength of light in a consistent manner, the
generalized Kirchhoff’s law is used in our paper �34�. Sec-
ond, state-of-the-art CFM is applied here to evaluate the tem-
perature and density distributions in the bubble �14,15�.
Through such elaboration of the thermal radiation scheme
�20,21�, we succeed in obtaining an emission spectrum that
agrees nicely with the experimental data as summarized in
�1� and, in addition, resolve the dilemma of whether the
pulse width is dependent on the wavelength.

The rest of this paper is organized as follows. We first
present the generalized Kirchhoff’s law in Sec. II, and show
in Sec. III that it leads to the formula for emissivity used in
�20,21� in certain limits. In Secs. IV and V we make use of
the generalized Kirchhoff’s law to derive the spectral radi-
ance of a heated multilayered sphere. In Secs. VI and VII,
respectively, we furnish the plasma model and CFM used in
the present paper. We then present relevant numerical results
in Sec. VIII and conclude our paper in Sec. IX.

II. THERMAL RADIATION

In SL, the high temperature reached inside the bubble
ionizes the gas content, forming a partially ionized plasma
�16,20,21,35,36�. Besides having finite optical thickness, the
bubble has a size �0.1–1 �m near the instant of maximum
compression, which is comparable to the wavelength of the
emitted light ranging from 200 to 800 nm. Hence, the as-
sumption of geometric optics is invalid. To properly take
account of the effects of finite absorption, wave reflection,
and diffraction, we employ in this paper the generalized
Kirchhoff’s law �34�, which yields the “classical” form of
Kirchhoff’s law as an asymptotic limit, to compute the power
spectrum.

We first review the statement of the “classical” form of
Kirchhoff’s law �see, e.g., �37��. Consider an isotropic ab-
sorbing medium with complex dielectric constant �=�R+ i�I,
refractive index n=��=nR+ inI, and a typical size d. If the
medium is in thermal equilibrium at temperature T and d is
large compared with the wavelength of light � so that the
geometric optics approximation holds, then the classical
form of Kirchhoff’s law relates the emission coefficient ����
and the absorption coefficient �����2nI� /c at �angular� fre-
quency ��2�f as �37�

�/� = nR
2B��T� , �2.1�

where

B��T� =
��3

8�3c2�e��/kBT − 1�
�2.2�

is the �frequency� spectral light intensity of a blackbody for
one polarization, with c, �, and kB being the speed of light in
vacuum, the Planck constant h divided by 2�, and the Bolt-
zmann constant, respectively. We remark that, besides the
assumption �	d, its application is justified only to a volume
emitter which is optically thin.

The generalized Kirchhoff’s law �34� is a generalization
of the classical form of Kirchhoff’s law to all sizes d and
optical thickness of a finite-size emitter, and can be derived
from the Maxwell equations

� · D�r,t� = 
n�r,t� , �2.3�

� · B�r,t� = 0, �2.4�

� � E�r,t� +
�B�r,t�

�t
= 0 , �2.5�

� � H�r,t� −
�D�r,t�

�t
= Jn�r,t� . �2.6�

Here the electric field E, the magnetic induction B, the dis-
placement field D, and the magnetic field strength H are
generated by the fluctuating charge density 
n and current
density Jn, which are a direct consequence of the random
thermal motions of the charges and satisfy the fluctuation-
dissipation theorem �see, e.g., �38��

�J̃n,i�r,��J̃n,j
* �r�,��	 =

4�

�
���,T��0�I�r,��
�r − r��
ij .

�2.7�

Here J̃n,i�r ,�� is the i component of the Fourier transform of
Jn�r , t�,

���,T� =
��

2
coth

��

2kBT
�2.8�

is the average energy of a quantum harmonic oscillator at
temperature T, and �0 is permittivity constant of vacuum.

In the presence of the thermal fluctuations 
n and Jn, all
fields E, D, H, and B are thermally fluctuating quantities.
The set of stochastic Eqs. �2.3�–�2.6�, together with the
fluctuation-dissipation theorem, completely determine the
statistics of the electromagnetic field of such a system and
the relevant theory is termed the thermal electromagnetic
theory �TET� �34�.

The generalized Kirchhoff’s law derived from TET �34�
states that the spectral radiance P�, defined as the power
emitted per unit wavelength interval and unit solid angle, is
given by the following formula �34�:

P��n� = B��T��abs�n� . �2.9�

Here P��n� is the spectral radiance in the direction of
n�r / 
r
, �abs�n� is the absorption cross-sectional area of the
emitter for an electromagnetic wave illuminating the emitter
from the direction of n, and
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B��T� =
hc2

�5�ehc/�kBT − 1�
�2.10�

is the spectral light intensity in each polarization for an ideal
blackbody. In Eq. �2.9� it is understood that �abs is the sum of
the absorption cross-sectional areas for incident light waves
with two perpendicular polarizations. It is evident that �abs is
equal to the power Pa dissipated in the emitter for an incident
plane wave carrying unit energy flux, which can be obtained
from the following volume integral over the emitter:

Pa =
�

2
� d3r�0�I�r,��
E�r,��
2. �2.11�

It is worthwhile to note that E�r ,�� the electric field devel-
oped inside the emitter might be strongly enhanced at certain
frequencies due to resonance effects and thus carries non-
trivial frequency dependence �36�.

Besides the spectral radiance, the integrated power of the
emitted light pulse is another quantity measured in SBSL
experiments and is simply the integral of Eq. �2.9� over the
wavelength

P = �
�1

�2

d�P�. �2.12�

III. GEOMETRIC OPTICS MODEL

We now apply the generalized Kirchhoff’s law summa-
rized above to consider light emission in the uniform bubble
model �UBM� as proposed in �20,21�. We will see that the
formula for the spectral radiance used in �20,21� is only an
approximate one that is valid only under certain restrictions.

To use a simple situation to elucidate the generalized
Kirchhoff’s law, we first calculate the power emitted from a
slab. Consider a weakly absorbing slab illuminated normally
by a plane-polarized plane wave with unit flux. Under the
assumption that the slab �with thickness L and area A� has
dimensions sufficiently large so that multiple internal reflec-
tions can be neglected and the internal electric field can be
represented by a single decaying, traveling wave only, the
internal power loss can be found from Eq. �2.11�

Pa =
��0�I

�c
�1 − pref�A�1 − e−�L� . �3.1�

Here pref is the fraction of power reflected from the slab
surface. For small absorption, the imaginary part of the re-
fractive index nI��I /2, so

P� = 2�1 − pref�B��T��1 − e−�L�A , �3.2�

where the factor of 2 properly takes care of the two possible
polarizations. This result is consistent with that obtained
from the standard radiative transfer theory �37,39�, upon
which the spectral radiance obtained in �20,21� is founded.

In the following we explicitly derive the formula for the
spectral radiance that was used by Hilgenfeldt et al. in
�20,21� from Eq. �3.2�. Figure 1 shows a uniform sphere of
radius R, which is divided into multiple thin cylindrical

shells. Each of these shells, indicated by the dashed lines,
subtends an angle of �−2� at the center, and has a length
L���=2R cos � along the x direction and a differential cross-
sectional area dA=2�R2sin � cos �d�. With the assumptions
that �i� pref=0, �ii� effects of refraction and diffraction at the
spherical interface are negligible, �iii� internal reflection is
ignorable, and �iv� each of these shells can be considered as
a slab with area dA and thickness L���, the radiance per unit
solid angle follows directly from Eq. �3.2� is given by

P� =� dA2B��T��1 − e−�z�

= 2�R2B��T�
1 +
e−2�R

�R
+

e−2�R − 1

2�2R2 � . �3.3�

Multiplying this by the total solid angle 4� straightforwardly
yields the formula Eq. �17� in Ref. �20�. As seen from the
derivation here, this formula is only valid under the assump-
tions mentioned above, through which the wave nature of
light has been completely neglected. Such an emission model
will be referred to as the geometric optics model �GOM� in
the following discussion. As we will show in our numerical
results �Sec. VIII�, the conditions for the validity of GOM do
not generally hold in a realistic SL model.

IV. MULTILAYERED SPHERE

As discussed in Sec. III, Hilgenfeldt et al. �20,21� have
assumed UBM as well as GOM in deriving the spectral ra-
diance. This simplification serves as an illustration of the
essential ingredients in SBSL. Yet its validity has to be veri-
fied, and for realistic calculations comparable to the experi-
ment, it is necessary to take full account of the hydrodynam-
ics inside the bubble. In light of this, in the following we will
employ CFM developed by Ho et al. �35� to simulate the
hydrodynamics of the bubble. It is then obvious that UBM
breaks down in such a situation and, instead, we can model
the inhomogeneous SL bubble as a multilayered sphere

FIG. 1. The configuration of a uniform absorbing sphere.
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�MLS� with a piecewise-constant configuration of tempera-
ture and refractive index �see Fig. 2�. In realistic calculations,
the number of layers is so large that MLS is able to mimic
the continuous distribution obtained from CFM. On the other
hand, MLS also includes UBM as a special case where there
is only a single layer.

Consider a MLS �i.e., the bubble� having a piecewise-
constant temperature profile T=Tj, j=1,2 , . . . ,N−1. As the
absorption cross section simply becomes the sum of the con-
tribution from each layer, it follows directly from Eq. �2.9�
that

P� = �
j=1

N−1

B��Tj��abs,j , �4.1�

where �abs,j is the contribution of the jth layer to the total
absorption cross section of the MLS. Equations �3.3� and
�4.1� are the equations that we use for computing the power
emitted from the SL bubble. In Sec. V we will evaluate �abs,j
from a wave optics perspective.

V. WAVE OPTICS MODEL

To evaluate �abs,j in a MLS, we first determine the elec-
tromagnetic field inside the absorbing sphere using the trans-
fer matrix formalism applicable to multilayered configura-
tion �see, e.g., �36��.

Consider a circularly polarized plane wave illuminating
an absorbing MLS �see Fig. 2�. The MLS is composed of
N−1 spherical shells, and the refractive index, the inner and
outer radii of the jth shell �j=1,2 , . . . ,N−1� are nj, aj−1, and
aj, respectively �a0=0 and aN−1=R are assumed�. The ex-
tended medium surrounding the MLS �i.e., the bubble� is
considered as the Nth layer and has a refractive index nN.

The electric and magnetic fields of the incident wave are
given by Einc�r�= �x̂+ iŷ�exp�ikz� and Binc�r�=−iE�r� /c.

Hereafter we assume that the wave has positive helicity. The
electric and magnetic field inside the jth layer of the MLS
�j=1,2 , . . . ,N�, can be, respectively, expressed in multipole
expansion as

E j�r� = �
l=1

�

il�4��2l + 1�

�� f j
�E�Yl,1

�0� +
� � �f j

�M�Yl,1
�0��

njk
� , �5.1�

B j�r� = −
inj

c
�
l=1

�

il�4��2l + 1�

�� f j
�M�Yl,1

�0� +
� � �f j

�E�Yl,1
�0��

njk
� , �5.2�

where the vector spherical harmonics Ylm
�0��� ,���−ir

��Ylm�� ,�� /�l�l+1�, with Ylm�� ,�� being the ordinary
spherical harmonics �40�.

For the extended medium where j=N, fN
�E�= fN

�M�= jl�nNx�,
with jl being the spherical Bessel function of the lth order
and x=kr, Eqs. �5.1� and �5.2� reduce to the ordinary multi-
pole expansion of a plane wave. For j�N, f j

����r� ��
=E,M� are governed by the radial wave equation:


 d2

dr2 + nj
2k2 −

l�l + 1�
r2 �rf j

����r� = 0, �5.3�

and, in addition, they satisfy the standard boundary condi-
tions on electromagnetic fields imposed at r=aj

f j
�E��r� = f j+1

�E� �r� , �5.4�

d

dr
�rf j

�E�� =
d

dr
�rf j+1

�E� �r�� , �5.5�

njf j
�M��r� = nj+1f j+1

�M��r� , �5.6�

nj+1

nj

d

dr
�rf j

�M�� =
d

dr
�rf j+1

�M��r�� . �5.7�

In general f j
����r� can be written as

f j
����r� = � j

���jl�njkr� + � j
���hl

�1��njkr� , �5.8�

where hl
�1� is the lth order spherical Hankel function of the

first kind. Substituting Eq. �5.8� into Eqs. �5.4�–�5.7� and
recasting them into matrix form, we can show that


� j+1
���

� j+1
��� � = T j

���
� j
���

� j
��� � , �5.9�

where T j
�E� and T j

�M� are, respectively, the TE-mode and TM-
mode transfer matrix at r=aj, given explicitly by

FIG. 2. A N-layered spherical system. The inner N−1 layers �the
bubble� are absorbing, while the outermost layer �the surrounding
fluid� is transparent.
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T j
�E� = − inj+1xj

2 � 
Wj+1,j
�E� �jl�njxj�,hl

�1��nj+1xj�� Wj+1,j
�E� �hl

�1��njxj�,hl
�1��nj+1xj��

− Wj+1,j
�E� �jl�njxj�, jl�nj+1xj�� − Wj+1,j

�E� �hl
�1��njxj�, jl�nj+1xj��

� , �5.10�

T j
�M� = − inj+1

2 njxj
2 � 
Wj+1,j

�M� �jl�njxj�,hl
�1��nj+1xj�� Wj+1,j

�M� �hl
�1��njxj�,hl

�1��nj+1xj��
− Wj+1,j

�M� �jl�njxj�, jl�nj+1xj�� − Wj+1,j
�M� �hl

�1��njxj�, jl�nj+1xj��
� . �5.11�

Here xj =kaj, and for convenience we define the generalized
Wronskian Wj+1,j

��� �f ,g� for TE and TM modes as

Wj+1,j
�E� �f ,g� = fg� − f�g , �5.12�

Wj+1,j
�M� �f ,g� =

fg�

nj+1
2 −

f�g

nj
2 + � 1

nj+1
2 −

1

nj
2� fg

x
, �5.13�

where �=d/dx.
In short, the transfer matrix T j

��� can be written as

T j
��� = 
Aj

��� Bj
���

Cj
��� Dj

��� � . �5.14�

We can now solve for the field coefficients � j
��� and

� j
���using the regularity condition at r=0 and radiation

boundary conditions at r=�, leading to the following rela-
tion:


 1

�N
��� � = 
A��� B���

C��� D��� �
�1
���

0
� . �5.15�

Here A��� ,B��� ,C��� ,D��� �without the subscript j� are the
elements of the total transfer matrix T��� from the layer j
=1 to the layer j=N−1, i.e., T���=TN−1

��� TN−2
���

¯T1
���. From

Eq. �5.15� we immediately get

�1
��� = �A����−1, �5.16�

�N
��� = C����1

��� = C���/A���. �5.17�

The field coefficients of each layer � j
���, � j

��� is now readily
obtained by iteratively applying Eq. �5.9�, from j=1 to
j=N−1, using the boundary conditions Eqs. �5.16� and
�5.17�.

Now we proceed to calculate the absorption cross section
of the jth spherical shell. To this end, we first evaluate

F j =
nNcaj

2

2
Re�� d�E j�r̂ � B j

*�� , �5.18�

which is directly proportional to the energy flux F j crossing
the jth interface at r=aj. With Eqs. �5.1� and �5.2�, we find,
after some algebraic manipulations

F j =
2�xnN

k2 Im�nj
*�

l=1

�

�2l + 1�

�
 f j
�E��xf j

�E���*

nj
* −

f j
�M�*�xf j

�M���
nj

�� , �5.19�

where x is evaluated at r=aj. Following directly from energy
conservation, the absorption cross section of the jth spherical
shell �abs,j is given by the difference between F j and F j−1

�abs,j = F j − F j−1. �5.20�

Eqs. �5.19� and �5.20� in conjunction with Eqs. �2.12� and
�4.1�, with no simplifying assumptions based on geometric
optics and optical thickness, are the major results of the wave
optics model �WOM� introduced here, which will be used in
this paper to calculate the light emission of a SL bubble.

VI. PLASMA MODEL OF MULTILAYERED
SPHERE

A. Formation of Plasma

In order to consider light emission processes in a MLS,
we have to find the complex refractive index nj and hence
the absorption coefficient � j of each layer. In the presence of
the high temperature developed during the collapse of a SL
bubble, the gas inside the bubble is partially ionized at the
instant of light emission �13,19–21,35,36�. Here we adopt a
simple collision-dominated plasma model in which the col-
lision frequency � is a constant dependent on the concentra-
tion and temperature of the plasma �37�. The refractive index
is then given by

n2��� = nb
2 −

�p
2

�2 + i��
, �6.1�

where �p=�Nee
2 /m�0 is the plasma frequency,

nb = �1 + 2N0�/3�0

1 − N0�/3�0
�1/2

, �6.2�

is the contribution to the refractive index due to the back-
ground neutral atoms as given by the Clausius-Mossotti
equation �see, e.g., �41��, and � is the atomic polarizability,
with e and m being the charge and the mass of electron,
respectively. For convenience we have suppressed the j de-
pendence of the relevant physical quantities in the above
equations. In the subsequent discussion we will use CFM
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developed in �35� to determine the number densities of elec-
tron and atom Ne and N0 as a function of time.

B. Collision Processes in plasma

Around the instant of maximum compression, the tem-
perature of a sonoluminescing bubble could reach tens of
thousands of kelvins, ionizing the gas content inside. While
Ref. �20� showed that the fraction of Ar+ ions amounts to
less than 1% of the bubble content using a uniform bubble
assumption, Ref. �35� took account of full hydrodynamics
and showed that this fraction can be as large as 30%. How-
ever, both papers point to the fact that the bubble content
becomes a partially ionized plasma with Ar being the domi-
nant species. Under this condition, bremsstrahlung is thought
to play a major role in the light emission mechanism; in
particular, electron-atom bremsstrahlung is expected to be
the dominant process compared to other bremsstrahlung pro-
cesses �20,21�.

On the other hand, as the numerical results obtained from
CFM showed the degree of ionization may be much higher
than those from UBM, we have developed here the WOM to
take account of effects due to reflection, refraction, and dif-
fraction as well. In accordance with the approach of WOM,
one has to consider the total effective collision frequency �,
which is the sum of contributions from electron-ion collision,
electron-atom collision, and electron-ion recombination. Ac-
cording to the initial and final states of the electron, the first
two are also known as free-free transitions, the latter one as
free-bound transition. Of course, the direct product of such
collisions is the emission of photons and the corresponding
mechanisms are electron-ion bremsstrahlung, electron-atom
bremsstrahlung, as well as electron-ion recombination.
Therefore, one can easily see the difference, as well as the
relation between our approach and that proposed in �20,21�.
In the following we provide the formulas of the collision
frequencies in these processes.

1. Electron-ion collision

The simplest picture describing electron-ion collisions
and electron-ion bremsstrahlung is to regard them as indi-
vidual binary events so that collective phenomena do not
enter. Under such an assumption the differential emission
cross-section d� f, which measures the probability of light
emission due to the scattering of a unit incident electron flux
from an ion with charge Ze, is given by the well-known
Kramer’s formula �39�. It is customary to include quantum
mechanical corrections to this classical formula as the Gaunt
factor �37�. For free-free transitions, including the free-free
Gaunt factor gff�f ,v� gives d� f as

d� f

df
= � e2

4��0 � c
�3 16��2

3�3m2v2

Z2

f
gff�f ,v� , �6.3�

where f is the light frequency and v is the speed of the
incident electron. Within the range of optical frequencies, the
free-free Gaunt factor is usually of the order 1.

The collisions between charged particles is formally de-
scribed by the scattering cross-section ����, measuring the

probability of scattering at an angle � of a unit incident elec-
tron flux from an ion. However, the cross section used in
transport theory to predict the scattering frequency is �tr,
related to the former through the relation �tr=�����1
−cos ��, where the overbar indicates averaging over the scat-
tering angle �. Using the relation between the differential
emission cross-section d� f and the transport cross-section �tr
�39�

d� f

df
=

8

3

e2v2

4��0c3hf
�tr, �6.4�

the transport cross section is found to be

�tr =
4�2

�3
� Ze2

4��0mv2�2

gff�f ,v� . �6.5�

The collision frequency, defined as �=Nv�tr, where N is the
number density of the background species �Ni for ions or N0
for atoms�, is then

�ei =
4�2

�3

NiZ
2e4

�4��0�2m2v3gff�f ,v� . �6.6�

2. Electron-ion Recombination

In electron-ion recombination, an electron is first captured
by an ion, forming a bound state with energy levels labeled
by quantum number n. A photon is released in such a process
and the differential emission cross section is given by Eq.
�6.3� with the free-free Gaunt factor replaced by the free-
bound Gaunt factor gfb�n , f ,v�. In addition to its dependence
on the photon frequency f and the velocity v of the incident
electron, the free-bound Gaunt factor is also a function of n
and approximately of the order unity in optical frequencies.
Accordingly, the transport cross section and the electron-ion
recombination collision frequency are given, respectively, by
Eqs. �6.5� and �6.6� with gfb�n , f ,v� replacing gff�f ,v�.

3. Electron-atom collision

An electron moving near a neutral atom can also experi-
ence a short-range Coulomb field, emitting radiation com-
monly known as electron-atom bremsstrahlung. There is no
simple theory to determine the corresponding transport cross
section as we are aware of; and common practice is to deter-
mine it from experiment with different incident electron en-
ergies. With good accuracy in the relevant range of electron
energies for an argon SL bubble, �tr has a linear dependence
on the electron energy Ee=mv2 /2 and �tr=ctrmv2 /2+dtr,
with the empirical constants ctr�0.1 m2 J−1 and dtr�−0.6
�10−20 m2 �20,42�. The electron-atom collision frequency is
therefore

�ea = N0v�ctrmv2/2 + dtr� . �6.7�

C. Effective collision frequency

Assuming local thermodynamic equilibrium prevails in
the plasma �as in the case for SL� and weak damping
��	��, we proceed to calculate the effective collision fre-
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quency �37� defined by �eff=�=Nv�tr�v�, here ¯ indicates
the Maxwellian average

¯ =
4�

3
� m

2�kBT
�3/2� m

kBT
��

0

�

dvv4e−mv2/2kBT�¯� .

�6.8�

Accordingly, the effective collision frequencies for electron-
ion bremsstrahlung, electron-ion recombination, and
electron-atom bremsstrahlung are obtained as �for clarity we
drop the superscript “eff”�:

�ei�rc� = 2�2�

3
�3/2

Ni� Ze2

4��0kBT
�2� kBT

m
�1/2

�e−hf/kBT gff�fb� �f ,T� , �6.9�

�ea =
8�2

3
N0� kT

�m
�1/2

�3ctrkBT + dtr� . �6.10�

Here the exponential factor exp�−hf /kBT� is commonly re-
ferred to as the Cillie exponential factor �43�; gff�f ,T� and
gfb�f ,T� are the velocity-averaged free-free and free-bound
Gaunt factor, respectively, �44�

gff�f ,T� =
ehf/kBT

kBT
�

hf

�

dEgff�f ,E�e−E/kBT, �6.11�

gfb�f ,T� = 2x1�
n*

�
1

n3exngfb�n, f ,v� . �6.12�

In Eq. �6.12�, xn=Eion /n2kBT, with Eion being the first ioniza-
tion energy of the atom, and n* is the lowest level for which
En* �hf .

Note that, assuming gff, gfb�1, the above equations can
be reduced to

gff�f ,T� = 1, �6.13�

gfb�f ,T� = 2x1�
n*

�
1

n3exn. �6.14�

The summation in Eq. �6.14� can be further simplified if the
photon energy is small compared with the ionization energy,
so that the energy level n* is high in comparison with the
ground state, as is the case for argon �20�. Since the density
of the levels increases rapidly with increasing n, the discrete
levels higher than n* can be replaced by a continuous spec-
trum and the summation replaced by an integration, and Eq.
�6.14� simplifies to

gfb�f ,T� = ehf/kBT − 1 = ehc/kBTmax��,�2� − 1. �6.15�

As the absorption coefficient � is related to the effective
collision frequency as

� = ��p

�
�2�

c
, �6.16�

we can find the absorption coefficients corresponding to Eqs.
�6.9� and �6.10�

�ei�rc� =
4

3
� 2�

3mkBT
�1/2 Z2Ni

2e6�2

�4��0�3kBTc3m

�e−hf/kBT gff�fb� �f ,T� , �6.17�

�ea = 8�2
NiN0e2�2

4��0c3 � kBT

�m
�3/2

��ctr +
dtr

3kBT
� . �6.18�

The absorption coefficient �ei�rc� in Ref. �20� differs from
ours in two ways. �i� They differ by a factor of kBT /hf .
However, this difference is not very significant as kBT�hf in
SL; �ii� For electron-ion bremsstrahlung, the free-free Gaunt
factor and the Cillie exponential correction were neglected in
Ref. �20�. As we will discuss later �see Fig. 7�, this could
result in a factor of 3 difference in the calculated spectra.

In the present paper, we explicitly take account of all
Gaunt factors and the exponential correction, in particular we
adopt the fitting formula proposed by Nozawa et al. �45� and
Itoh et al. �46� to compute the average free-free Gaunt factor.
For the free-bound Gaunt factor, since the photon energies
1.5–6.2 eV, corresponding to the wavelength 200–800 nm,
is small compared with the ionization energy �Eion
=15.8 eV for argon�, Eq. �6.15� is still a good approximation
and we retain it for computing the average free-bound Gaunt
factor. As a remark, following Eqs. �6.9�, �6.13�, and �6.15�
we have �rc /�ei�ehf/kBT−1, hence electron-ion bremsstrah-
lung is more dominant over recombination when hf 	kBT.
For SL, however, both processes are important since the ther-
mal energy is typically �1.7−4.3 eV.

For the purpose of comparison, in the following discus-
sion we will use two different sets of formulas, respectively
denoted by P1 and P2 models, to calculate the collision fre-
quencies. The P1 model employs the free-bound Gaunt fac-
tor, but ignore the free-free Gaunt factor and the Cillie expo-
nential cut-off factor

�ei = 2�2�

3
�3/2

Ni� Ze2

4��0kBT
�2� kBT

m
�1/2kBT

hf
�6.19�

�rc = 2�2�

3
�3/2

Ni� Ze2

4��0kBT
�2� kBT

m
�1/2kBT

hf
gfb �f ,T� ,

�6.20�

�ea =
8�2

3
Na� kBT

�m
�1/2

�3ctrkBT + dtr� . �6.21�

Through Eq. �6.16�, it is obvious that this set of formulas for
the collision frequencies are consistent with the set of ab-
sorption coefficients used in �20,21�.

By contrast, the P2 model, derived earlier in this section,
readily takes account of free-bound Gaunt factor, free-free
Gaunt factor, and exponential cut-off factor

�ei = 2�2�

3
�3/2

Ni� Ze2

4��0kBT
�2� kBT

m
�1/2

e−hf/kBT gff �f ,T� ,

�6.22�
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�rc = 2�2�

3
�3/2

Ni� Ze2

4��0kBT
�2� kBT

m
�1/2

e−hf/kBT gfb �f ,T� ,

�6.23�

�ea =
8�2

3
Na� kBT

�m
�1/2

�3ctrkBT + dtr� . �6.24�

Finally we state the basic assumptions underpinning the
above formulas for plasma collision processes: �1� The
plasma is “cold” meaning that the electron thermal velocity
is negligible with respect to the phase velocity of the wave,
vth	vph; �2� the plasma is in the weak coupling regime, i.e.,
the ions are weakly interacting during their thermal motions.
It is customary to indicate the degree of coupling by the
dimensionless ion-coupling parameter �see, e.g., �47��

� =
Z2e2

4��0RionkBT
, �6.25�

with Rion= �4�Ni /3�−1/3 being the mean interionic distance. If
�	1, the system is said to be weakly coupled; on the other
hand if ��1, the system is in the strong coupling regime
�47�. We find ��1 in a typical SL bubble �Sec. VIII�, hence
the assumption of weak coupling is at least approximately
satisfied.

VII. COMPUTATIONAL FLUID MECHANICS

In this section, we summarize the CFM used in the
present paper, which was developed by Yuan et al. �14� and
Cheng et al. �15� and later extended by Ho et al. �35� to
include the ionization and recombination processes. The
model couples the Rayleigh-Plesset �RP� equation for the
bubble wall with the Navier-Stokes �NS� equations for the
gas �including all the charged species resulting from ioniza-
tions�, while independently solving the energy equation for
the surrounding water. The number densities of the charged
species are computed from the reaction rates approach. The
effects of viscosity, surface tension, equation of state �EOS�,
compressibility and thermal conductivity of the ambient liq-
uid are also taken into account.

A. Bubble-wall dynamics

To account for the effect of liquid compressibility, a more
robust RP equation that gives the bubble radius R as a func-
tion of time t is used �14,15,35,48�

1 − M

1 + M
RR̈ +

3 − M

2�1 + M�
Ṙ2 = Hl −

Ps�t��

0

+
tRHl

˙

1 + M
. �7.1�

Here tR�R /cl, with cl the speed of sound in the surrounding

liquid, M � Ṙ /cl, t�� t+ tR, 
0 is the ambient liquid density,
and Ps�t��=−Pasin��t�� is the sonic driving pressure with
frequency � and amplitude Pa. Also, the enthalpy Hl and the
speed of sound of the liquid and cl are given by

Hl = �
P0

Pl dPl


l
, �7.2�

cl
2 =

dPl

d
l
. �7.3�

This modified RP equation includes terms to first order in the
Mach number M of the bubble wall and allows for a variable
cl.

Combining Eqs. �7.2� and �7.3� with the EOS of the am-
bient liquid in the modified Tait form �49�

Pl + B

P0 + B
= � 
l


0
�n

, �7.4�

yields the explicit forms for Hl and cl

Hl =
n

n − 1
�Pl + B


l
−

P0 + B


0
� , �7.5�

cl
2 =

n�Pl + B�

l

, �7.6�

where B=3049.13 bar and n=7.15 are valid for water up to
105 bar.

Equations �7.1�, �7.5�, and �7.6� must be supplemented by
the boundary condition at the bubble wall, namely, that the
pressure Pl�t� on the liquid side of the gas-liquid interface
differs from the pressure P�R , t� on the gas side of the gas-
liquid interface by the effects of surface tension and the nor-
mal component of viscous stresses �49�

P�R,t� − �rr
r=R = Pl�t� +
4�lṘ

R
+

2�

R
. �7.7�

B. Hydrodynamics of gas

The conservation of mass, momentum, and energy for the
gas flow in the spherical bubble is described by the com-
pressible NS equations. They can be rewritten into a conser-
vative form with source terms as

�


�t
+

�

�r
�
v� = −

2
v
r

, �7.8�

��
v�
�t

+
�

�r
�
v2 + P� = −

2
v2

r
+

1

r2

�

�r
�r2�rr� +

�rr

r
,

�7.9�

��
E�
�t

+
�

�r
�
E + P�v = −

2�
E + P�v
r

+
1

r2

�

�r

�
r2�v�rr + k
�T

�r
�� . �7.10�

Here r, 
, v, P, T, �rr, k e, and E=e+v2 /2 are the radial
distance from the center of the bubble, gas density, radial
velocity, pressure, temperature, normal viscous stress, coef-
ficient of thermal conductivity, the internal energy, and total
energy per unit mass, respectively.

If, due to ionizations and recombinations, there exists Ns
species inside the bubble, then Ns−1 mass conservation
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equations for these species must be supplemented with Eqs.
�7.8�–�7.10�. In Ref. �35�, the maximum ionization level of
the gas atom is taken to be 5, making a total of Ns=7 species
inside the bubble. This is more than adequate for the present
temperature range; in fact, Ho et al. �35� have shown that
even the second ionization level can be safely ignored in
practice. Note, since the ion densities change due to ioniza-
tions and recombinations, source terms must be added to the
right-hand side of the conservation equations.

For convenience, let f j be the mass fraction of Arj+ �with
j=0,1 ,2 ,3 ,4 ,5� or electrons �with j=e�, so that � j=e,0

5 f j =1.
Therefore 
f j represents the mass density of an individual
species. The number density of an individual species is re-
lated to its mass fraction by nj =
f j /mj, where mj is the mass
of an atom �j=0�, or an ion with a charge j �j=1−5�, or an
electron �j=e�. The mass conservation equations of the spe-
cies is then given by

��
f j�
�t

+
�

�r
�
f jv� = −

2
f jv
r

+ �Ss� j . �7.11�

Here, the extra term �Ss� j is the source term for 
f j which
arises from ionization and recombination processes. It de-
pends on the net rate of change of the number density of the
species ṅj through

�Ss� j = mjṅj . �7.12�

For the ions �j=0,1 ,2 ,3 ,4 ,5�, the net rate of change is
given by

nj
˙ = nj−1ne� j−1→j

ion − njne� j→j+1
ion + nj+1ne�� j+1→j

rrec + � j+1→j
trec �

− njne�� j→j−1
rrec + � j→j−1

trec � , �7.13�

where � j→j+1
ion ,� j→j−1

rrec , and � j→j−1
trec are the rates of ionization,

radiative recombination, and three-body recombination of
particles with a charge of j, respectively. The formulas for
these rates can be found in �50�.

The net rate of change of the number density of electrons
is simply given by charge conservation. Now that

fe = 1 − �
j=0

5

f j , �7.14�

taking time derivative and multiplying both sides by 
 gives

�Ss�e = − �
j=0

5

�Ss� j . �7.15�

C. Equation of state of gas

The hydrodynamics of the bubble is certainly affected by
the EOS. The most widely used van der Waals EOS can be
modified to take into account the ionization processes �19�

P = ��
j=0

5
f j

mj
+

fe

me
� kB
T

1 − b

, �7.16�

e =
3

2
kBT��

j=0

5
f j

mj
+

fe

me
� + kB�

j=1

5

�
i=j

5
f i

mi
Tj , �7.17�

where Tj is the ionization energy of an ion with charge j
−1, and b the excluded volume. This EOS is denoted as
MVEOS.

The physical meanings of the MVEOS, Eqs. �7.16� and
�7.17�, are manifest. The total pressure P is the sum of the
contributions by different species, which are separately taken
into account in proportion to their abundances. The internal
energy e of the gas consists of both the thermal energy �the
first term� and ionization energy �the second term�.

D. Energy transport in the liquid

The changes in the liquid temperature Tl is accounted for
with the assumption that the liquid compressibility and vis-
cosity do not affect the heat transfer process between the
bubble and the surrounding water. As such, the energy equa-
tion for the water is

FIG. 3. A plot of the bubble radius R versus time t, which is
normalized with respect to the acoustic period Td.

FIG. 4. The bubble radius R �upper panel� and the polytropic
exponent � �lower panel� are plotted against the normalized time
103�t− tmin� /Td, where tmin is the moment at which R attains its
minimum value of about 0.7 �m.
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�Tl

�t
+ vl

�Tl

�r
= Dl

1

r2

�

�r
�r2�Tl

�r
� , �7.18�

where vl and Dl are the velocity and thermal diffusion coef-
ficient of the liquid, respectively.

VIII. NUMERICAL RESULTS

In order to elucidate the significance of individual physi-
cal factors affecting SBSL, in the following we present and
compare numerical results obtained from simulations con-
structed with different models. Specifically, we consider �i�
UBM versus CFM model; �ii� GOM versus WOM; and �iii�
the two plasma models, P1 versus P2.

The rest of this section is organized as follows: First we
study how the effects of various physical entities, including
plasma, wave, and temperature, can affect the emitted light
pulse using the simple UBM model. Then we use the CFM
model that is more realistic to mimic SBSL and compare
relevant numerical results with those of UBM.

A. Emission in Uniform Bubble Model

UBM here refers to the model used in �20,21�, where the
RP equation assumed incompressibility of the surrounding

liquid and a variable polytropic exponent ��R , Ṙ ,T� was
used to account for effects of thermal conduction. However,
instead of using the fitting formula in �20� for computing the

polytropic exponent ��R , Ṙ ,T�, we employed the formula
proposed in �51� in the simulations. As in Ref. �20�, we stud-
ied the oscillations of a bubble with ambient radius R0
=5.0 �m, subjected to an ultrasonic wave with f =20 kHz
and Pa=1.3 atm. Figures 3 and 4, respectively, show for the
UBM the time evolutions of the bubble radius R over one
acoustic cycle and, in the vicinity of the maximum bubble
compression, the radius and the polytropic exponent �. The
number density of argon atoms and the temperature near the
instant of minimum radius are shown in Fig. 5. Here we
remark that the temperature profile is slightly different from
that in �20� due to the difference in the formulas for

��R , Ṙ ,T�. The profile remains essentially the same, but the

FIG. 5. Time profiles of temperature T �upper panel� and num-
ber density of argon atom n0 �lower panel� near the instant of mini-
mum bubble size.

FIG. 6. Free-free �solid line� and free-bound �dashed line� Gaunt
factors multiplied by the Cillie exponential factor at the instant of
minimum bubble size.

FIG. 7. �Color online� The spectral radiance P� is plotted
against the wavelength � for the following models: GOM�P1
�grey-dashed line�, GOM�P2 �grey-solid line�, WOM�P1 �dark-
dashed line�, and WOM�P2 �dark-solid line�.

FIG. 8. FWHM obtained from UBM�GOM versus wavelength
�. Lines with circles, squares, crosses, diamonds and triangles, re-
spectively, represent the cases with a scaling of 0.5; 0.75; 1 �i.e., no
scaling�; 1.50; and 1.75.
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peak temperature in our result is about 3000 K higher. The
temperature and density profiles are used as inputs in our
calculations of the spectral radiance, from which other light
emission properties �e.g., pulse shapes and full width at half
maximum �FWHM�� are obtained.

1. Plasma and wave effects

As mentioned previously, we employed two plasma colli-
sion models P1 and P2 in the simulations. The differences
in these two models originate from the free-free �or free-
bound� Gaunt factor and the Cillie exponential cut-off factor
exp�−hf /kBT�. The exponential factor is usually close to
unity in the Rayleigh-Jeans limit where hf 	kBT, but for the
case of SL, kBT is of the order of a few electron volts and is
within the range 1.5–6.2 eV of the observed light spectrum,
and hence is not negligible. In particular we find, when the
bubble is at minimum size and the temperature and density
of its contents are also at their maxima, the free-free Gaunt
factor and the free-bound Gaunt factors, multiplied by the
exponential cutoff, result in a correction factor of order 0.1
�see Fig. 6�. Figure 7 shows the computed power spectra

obtained from simulations constructed respectively with
GOM/WOM�P1/P2, clearly demonstrating that the P2
model indeed leads to an decrease in the radiance.

Furthermore, we can observe in Fig. 7 that the power is
overestimated when GOM is used rather than WOM, which
can be readily explained as follows. When a plane wave is
incident on a WOM bubble, part of it is reflected or scattered
from the boundaries and the remaining part is absorbed as
heat. In light of Kirchhoff’s law then, less absorption implies
less emission. In contrast, reflection and diffraction are ne-
glected in GOM, resulting in an overestimated absorption
and hence emission. Therefore, to achieve realistic power
calculations comparable with experimental results, the ef-
fects of both the wave nature of light and the Gaunt factor
correction cannot be neglected, consistent with the point we
made earlier.

In subsequent discussions we will employ two specific
light emission models: The model proposed in Ref. �20�
�GOM+P1� and our present model �WOM+P2�, and it should
be understood that all power computations employing GOM
are done with P1 while those employing WOM are done with
P2.

2. Temperature effects

For our case studied here using the UBM model, the
maximum temperature achieved at the instant of minimum
bubble size is about 23 000 K �Fig. 5�. To study the effect of
the interior temperature on light emission, we scale by
hand the original temperature profile for Pa=1.300 atm and
R0=5.0 �m by some chosen factors, say 0.3,0.5,0.75,1.5,
and 1.75, while keeping the densities of Ar neutrals constant.
Accordingly, two of the three input parameters to the light
emission model �temperature and ion number density� are
changed and one �the atom number density� remains fixed.
We employ both GOM and WOM to calculate the power,
and study the spectral variation of the FWHM calculated

TABLE I. Driving pressure Pa and ambient radius R0 at T0

=20 °C and T0=2.5 °C that give stable sonoluminescing bubble for
f =26.5 kHz.

T0=20 °C

Pa �atm� 1.275 1.283 1.292 1.300

R0 ��m� 2.9 3.2 3.6 3.9

T0=2.5 °C

Pa �atm� 1.320 1.350 1.375 1.400

R0 ��m� 2.0 3.5 4.0 4.5

TABLE II. Driving pressure Pa and ambient radius R0 at T0

=20 °C that give stable sonoluminescing bubble for f =20 kHz.

Pa �atm� 1.275 1.300 1.325 1.350

R0 ��m� 2.6 4.0 4.7 5.4

FIG. 9. FWHM obtained from UBM�WOM versus wavelength
�. Lines with circles, squares, crosses, diamonds, and triangles,
respectively, represent the cases with a scaling of 0.5; 0.75; 1 �i.e.,
no scaling�; 1.50; and 1.75.

FIG. 10. FWHM versus wavelength � calculated from UBM
+WOM. Cases with T=20 °C and T=2.5 °C are indicated by the
solid curve and the dashed curve, respectively.
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within 100 nm wavelength windows as shown in Figs. 8 and
9. It is remarkable that a consistently smaller spectral varia-
tion of the FWHM is obtained when the light emission
model WOM is used. The unscaled profile is about constant
over the range of wavelength considered as in Ref. �20�,
which employed UBM and GOM, and the profile still re-
mains remarkably constant when the temperature was scaled
down by a factor of 0.5 and 0.75 �to a peak temperature of
about 10 000–20 000 K�. Scaling down by 0.3 �to a peak
temperature of about 7000 K� produced zero power output
since the temperature was much lower than that required for
ionization. Nevertheless, scaling up by 1.5 and 1.75 �to a
peak temperature of about 35 000–45 000 K� produces dra-
matic variation of the FWHM. Hence, we find that the spec-
tral uniformity of the FWHM holds only when the SL bubble
temperature is restricted within a rather small range of mod-
erate values. However, we remark that the temperature is
underestimated in the UBM since local temperature rises
were not taken account of. With a more realistic hydrody-
namic modeling, Ref. �35� found the temperature should be
several 104 K higher. Thus, we expect that a larger FWHM

spectral variation with increased driving pressure will be an
essential realistic feature of SL.

In addition, we have studied the effect of ambient water
temperature on SL light emission, using WOM and the val-
ues of �Pa, R0� extracted from the phase diagram in Ref.
�52�, at T0=20 °C and 2.5 °C and at a driving frequency of
f =26.5 kHz. Here we observe from Fig. 10 the general trend
of a larger FWHM toward the red end of the spectrum as the
pressure is tuned up, and this increase is further enhanced at
a lower water temperature. This is consistent with the experi-
mental findings of Moran and Sweider �6� and is readily
explained. At a lower water temperature, the bubble can be
driven harder �52� so that, given a certain value of ambient
radius, a larger driving pressure can be applied while main-
taining bubble stability. The bubble collapses more violently
under the larger pressure and hence the temperature of the
bubble interior achieves a higher value, resulting in a larger
FWHM spectral variation. Therefore, in effect, both of our
observations under increased driving pressure and lower wa-
ter temperature can be explained in terms of the higher tem-
perature reached inside the bubble. �See Table I.�

FIG. 11. Temperature T, num-
ber densities of argon neutrals
n�Ar�, ions n�Ar+�, and electrons
n�e−� shown as a function of time,
where t=0 is the instant of mini-
mum bubble radius, for a UBM
bubble with Pa=1.325 atm, and
R0=4.7 �m.

FIG. 12. �Color online� Snap-
shots near the instant of minimum
bubble radius �t=0� for the same
quantities as in Fig. 11 plotted
against radial distance, for a CFM
bubble with Pa=1.325 atm, and
R0=4.7 �m. Grey lines indicate
times before zero while dark lines
indicate times after zero.
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B. Computational Fluid Mechanics Model

1. Hydrodynamics

Now we employ CFM developed by Ho et al. �35� that
includes the effects of ionizations and recombinations to cal-
culate the power spectra and pulse profiles using WOM, and
compare the results with those obtained from joint applica-
tion of UBM and GOM. The set of conditions that we em-
ploy is extracted from Ref. �20� and shown in Table II, where
T0=20 °C, f =20 kHz and the dissolved gas concentration is
0.20%. Figures 11 and 12, respectively, show the computed
results of UBM and CFM for a case with Pa=1.325 atm,
R0=4.7 �m. It is found that the maximum temperature ob-
tained with CFM can exceed 5�104 K while that in UBM is
less than 3�104 K. Accordingly, the number of Ar+ ion in
CFM is much greater than that in UBM.

2. Light emission

To apply WOM to CFM, which produces an inhomoge-
neous profile of bubble temperature and number densities,
we approximate the resultant inhomogeneous profile by a
layered one and use within each layer j the average values of
the temperature, the number densities of atom and electron

there. The absorption coefficient ��j�, collision frequency
��j�, and refractive index n�j� can accordingly be computed
using these averaged values. This approximation scheme al-
lows for the application of WOM to the resulting multilay-
ered spherical configuration.

As the degree of ionization in CFM result is much higher
than that in UBM, the difference in the optical properties of
these two models is obvious. As shown in Figs. 13 and 14,
� /�p is reduced by a factor of 2.5 in CFM as compared to
UBM. In particular, in CFM � /�p is close to unity near the
UV end, indicating that plasma collective effects may be
significant in the short-wavelength regime. Also, both disper-
sion and absorption are considerably stronger in the CFM
case, exhibiting a larger variation in nR and a larger nI than
the UBM case.

In Sec. VI B we have made the assumption that the
plasma is so tenuous that the Coulomb energy is much
smaller than the average thermal energy of individual par-
ticles and the plasma behaves like an ideal gas. The values of
the ion-coupling parameter � at the instant of maximum
bubble compression for the cases studied here �see Table II�
are shown in Fig. 15. For UBM we note that ��0.7 for all
four cases. In the CFM bubble, interestingly there is a clear

FIG. 13. Shown on the left are
the real part nR and imaginary part
nI of the refractive index, on the
right are the ratios � /�p and � /�p

versus the wavelength � for a
UBM bubble with Pa=1.375 atm
and R0=2.6 �m at the instant of
minimum radius. In the graph
� /�p versus �, the dotted, short-
dashed, long-dashed, and full
lines, respectively, show, �ei, �rc,
�ea, and �.

FIG. 14. Same as Fig. 13, for a
CFM bubble with Pa=1.325 atm,
and R0=4.7 �m. The quantities
shown here are those of the inner-
most layer which occupies the in-
ner 7.5% of the bubble radius for
Pa=1.325 atm hence is represen-
tative of the hottest and densest
region of the bubble.
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formation of two regions: an inner core which is moderately
coupled ��0.7 and an outer shell which is weakly coupled
��0. In addition the effect of increasing the driving pres-
sure is seen to increase the size of this moderately coupled
inner core. Since the degree of coupling is moderate and not
too strong, we expect that the formulas used for the absorp-
tion coefficients and collision frequencies based on the tenu-
ous plasma assumption should still apply. However, on the
other hand, if the driving pressure increases while maintain-
ing the stability of oscillation, it is likely that the plasma
might become a nonideal one. The physical property of such
dense nonideal plasma is rather complicated and is beyond
the scope of the present paper �47�.

In the following we contrast data obtained, respectively,
from GOM+UBM and WOM+CFM and specifically con-
sider three different physical quantities, namely, the spec-
trum, the pulse shape, and the FWHM of light pulses.

In Figs. 16 and 17 we show the computed spectra using
GOM+UBM+P1 and WOM+CFM+P2, respectively. One
clearly sees the improvement �Fig. 17� of our refined model,
namely, WOM+CFM+P2, that the calculated spectral shape

is much closer to the experimental results �1� than the
GOM+UBM+P1 model. In particular, major improvement is
seen in the UV portion of the spectrum.

The calculated pulse shapes are shown in Figs. 18 and 19,
respectively, evidently the pulse shapes produced from
WOM+CFM+P2 are more consistent with experimental data
�4,6,53� where the long-time tail was not observed. By
contrast, as shown Fig. 18, a long-time tail appears in
GOM�UBM�P1 and is an undesirable feature.

Figure 20 shows the calculated FWHM plotted against the
wavelength for both cases. While it is clear that the FWHM
increases with driving pressure as found in experiments
�4,6,53�, we also see that the FWHM remains nearly a con-
stant over 200–800 nm only at a low pressure Pa
�1.275 atm even in the more realistic WOM�CFM�P2
model �c.f. Sec. VIII A 2�. We remark that the results ob-
tained by Gompf et al. �4� showing similar pulse widths for
the red and UV pulse were obtained under a driving pressure
of Pa=1.200 atm; which is smaller than the lowest pressure
Pa=1.275 atm we used and is therefore expected to show a

FIG. 15. �Color online� The ion-coupling parameter � is plotted
against r, normalized by the minimum radius Rmin at the instant of
maximal bubble compression. The values obtained from UBM
�CFM� are indicated by grey �dark� lines.

FIG. 16. Spectral radiance P� versus wavelength � obtained
from GOM+UBM+P1. The experimental spectrum is obtained from
Barber et al. �1�.

FIG. 17. Spectral radiance P� versus wavelength � obtained
from WOM+CFM+P2. The best fit for the experimental spectrum
�1� is indicated by the solid line, in which Pa=1.276 atm, R0

=2.7 �m.

FIG. 18. �Color online� Normalized power versus time obtained
from GOM+UBM+P1. The solid, dashed, and dotted lines are, re-
spectively, the total normalized power, the normalized powers in the
red and UV regions.
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constant pulse width. In particular the results of Moran and
Sweider �6� showed the FWHM increases with wavelength at
a low ambient water temperature 3 °C, which, as remarked
previously, also resulted in a larger driving pressure. Thus we
emphasize that in general the notion of wavelength indepen-
dence of the SL pulse width is only correct at low driving
pressures; and at higher driving pressures spectral dispersion
of the pulse width shows up, and this can be simply ex-
plained within our model. Either effects of higher driving
pressure or lower water temperature boil down to the conse-
quence of higher bubble temperature. As the bubble becomes
hotter, both optical dispersion and absorption become more
significant and hence the bubble becomes more optically
opaque, approaching a blackbody surface emitter. Red light
is then radiated for a longer duration than the UV since,
throughout one cycle, the bubble can stay at a lower-
temperature state for a longer duration. As a consequence,
the pulse width increases toward the red end of the spectrum.
In other words, the emitted light becomes more spectrally
dispersive because of the increased absorption and dispersion
in the plasma medium. In particular, the absorption is highest
�Figs. 13 and 14� at the red end of the spectrum, resulting in
a flatter pulse shape there �larger FWHM�. Thus, besides
using a lower ambient temperature as in Ref. �6�, if a strong
enough pressure is applied �while still maintaining bubble
stability� the spectral variation of the FWHM would be an
observable consequence in experiment.

IX. CONCLUSION

In summary, we have proposed in the present paper a
robust theory for optical emission in SBSL that properly
takes into account of the wave nature and propagation of
light in the absorptive plasma formed inside a sonoluminesc-
ing bubble in a self-consistent way. In addition, our theory
can be applied to bubbles with inhomogeneous density and
temperature profiles. The validity of our scheme was exam-
ined for the case of SBSL with argon bubbles. By introduc-

ing and implementing appropriate Gaunt factors and expo-
nential correction in the collision frequencies; as well as the
effects of optical thickness, scattering, reflection, and diffrac-
tion, our light emission model successfully explains the ma-
jor features �including power spectrum, pulse shape, and
FWHM� observed in SBSL experiments. In addition, the
computed power spectra and pulse shapes are shown to be in
excellent agreement with experimental results.

Besides, we have also shown that the experimentally ob-
served spectral independence of the FWHM at T0=20 °C is
ascribable to the relatively small temperature range �about
10 000–30 000 K� achievable in a collapsing SL bubble.
Above this range the bubble behaves in the way of a black-
body surface emitter and the spectral variation of the FWHM
should be more notable. In fact, as the driving pressure goes
up, the temperature reached inside the bubble rises. Also, if
the ambient water temperature is lowered at a fixed ambient
radius R0, the driving pressure allowable for bubble stability
extends to a larger value. This provides a theoretical expla-
nation for why Moran and Sweider �6� found a spectral
variation of the pulse width at T=3 °C.

Notwithstanding the above-mentioned achievements, the
model developed in the present paper is only one of the
many steps toward a better understanding of SBSL, which is
an extremely complex phenomenon resulting from the subtle
interplay of hydrodynamics, chemical reactions, plasma
physics, and optics as well. Much more challenging prob-
lems, e.g., SBSL with inert gases other than argon and inclu-
sion of water vapor in the hydrodynamic code, are still ahead
for us. They are surely our goal of endeavor in the future.
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FIG. 20. FWHM of light pulse versus wavelength � obtained at
different driving pressures: circle Pa=1.275 atm, square Pa

=1.300 atm, diamond Pa=1.325 atm, and triangle Pa=1.350 atm.
Dashed lines with empty symbols and solid lines with filled sym-
bols are calculated from GOM+UBM+P1 and WOM+CFM+P2,
respectively.

FIG. 19. �Color online� Normalized power versus time obtained
from WOM+CFM+P2. The solid, dashed, and dotted lines are, re-
spectively, the total normalized power, the normalized powers in the
red and UV regions.
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